If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+4x-750=0
a = 4.9; b = 4; c = -750;
Δ = b2-4ac
Δ = 42-4·4.9·(-750)
Δ = 14716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14716}=\sqrt{4*3679}=\sqrt{4}*\sqrt{3679}=2\sqrt{3679}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{3679}}{2*4.9}=\frac{-4-2\sqrt{3679}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{3679}}{2*4.9}=\frac{-4+2\sqrt{3679}}{9.8} $
| 1/2x+5/24=1/3x-1/8 | | 4b-12=14b | | n÷11=3 | | 1=10x+42=5x-4 | | n|11=3 | | 16t^2+24t+50=0 | | 3x-8=x5 | | x=900+1.5x | | H=-16t+14t+4 | | 20x+25^2=350 | | 20x+500=350 | | Y=3x-1/4 | | X=24-4y | | (25/x+4)3–8x=0 | | (4x-3)(5x-2)=0 | | 10−y=2.301 | | 4|x−3|=17 | | 4x−3=17 | | -2/3*x/2=-5/12 | | 2x+6x+4+8=0 | | (20x-32)+3=33 | | 1/3k=1/2k | | 3x+500=4500 | | -2x+6(7/8x-5/8)=6 | | 6k^2+6k-18=-6 | | 2(u+6)=5u+6 | | -29+r=34 | | −0.5(4y−3)=0.5(7−2y) | | -2(3+1.2y)+3y=-6 | | 6y-4/5=-3 | | 4x-30+2x+30=180 | | 7c+35=-14c+28 |